
1

NOTICE:
Distribution authorized to the

Department of Defense and
U.S. DoD contractors only.

Other requests shall be
referred to: Contracting

Officer, PET II, Code N111
Stennis Space Center, MS

Introduction to the
Earth System Modeling Framework

Cecelia DeLuca cdeluca@ucar.du
Nancy Collins nancy@ucar.edu
Jon Wolfe jwolfe@ucar.edu

January 18-19, 2005

Climate
Data
Assimilation

Weather

3

Goals of this Tutorial
1. To give future ESMF users an understanding of the background, goals, and

scope of the ESMF project
2. To review the status of the ESMF software implementation and current

application adoption efforts
3. To outline the overall design and principles underlying the ESMF software
4. To describe the major classes and functions of ESMF in sufficient detail to

give future users an understanding of how ESMF could be utilized in their own
codes

5. To describe in steps how a user code prepares for using ESMF, incorporates
ESMF, and runs under ESMF

6. To identify ESMF resources available to users such as documentation, mailing
lists, and support staff

7. To define what is required for ESMF compliance
8. To examine and work with code examples in order to demonstrate ESMF

adoption and use

4

Specific Topics
• Standard behaviors and interfaces across ESMF
• Bottom-up and top-down approaches to adoption
• What it means to become an ESMF Component
• Defining hierarchical applications with Gridded

Components and Coupler Components
• Creating and manipulating State, Field and Grid classes
• Setting up applications for sequential or concurrent

execution
• Why there is an ESMF Virtual Machine
• How to use ESMF utilities such as Time Manager, LogErr,

and Configuration Attributes

5

ESMF Website

http://www.esmf.ucar.edu

See this site for downloads, documentation, references,
repositories, meeting schedules, test archives, and just about
anything else you need to know about ESMF.

References to ESMF documentation in this tutorial correspond to
the documentation releases with ESMF Version 2.1.0.

6

1 BACKGROUND, GOALS, AND
SCOPE
• Overview
• ESMF and the Community
• The ESMF Organization
• Goals and Rationale for Adoption
• Exercises

7

Motivation
In climate research and NWP...

increased emphasis on detailed representation of individual physical processes;
requires many teams of specialists to contribute components to an overall
modeling system

In computing technology...
increase in hardware and software complexity in high-performance computing,
as we shift toward the use of scalable computing architectures

In software …
development of frameworks, such as FMS, GEMS, CCA and WRF, that
encourage software reuse and interoperability

The ESMF is a focused community effort to tame the complexity of models and
the computing environment. It leverages, unifies and extends existing software
frameworks, creating new opportunities for scientific contribution and collaboration.

8

Background
NASA’s Earth Science Technology Office proposed the creation of an
Earth System Modeling Framework (ESMF) in the September 2000 NASA
Cooperative Agreement Notice (CAN):

“Increasing Interoperability and Performance of Grand Challenge
Applications in the Earth, Space, Life and Microgravity Sciences”

A large, interagency collaboration with roots in the Common Modeling
Infrastructure Working Group proposed three interlinked projects to develop
and deploy the ESMF, which were all funded:

Part I: Core ESMF Development (PI: Killeen, NCAR)
Part II: Modeling Applications (PI: Marshall, MIT)
Part III: Data Assimilation Applications (PI: da Silva, NASA GMAO)

9

NASA CAN ESMF Project
Description
GOALS: To increase software reuse, interoperability, ease of use and performance

portability in climate, weather, and data assimilation applications
PRODUCTS:
• Core framework: Software for coupling geophysical components and utilities for building

components
• Applications: Deployment of the ESMF in 15 of the nation’s leading climate and weather

models, assembly of 8 new science-motivated applications
METRICS:

RESOURCES and TIMELINE: $9.8M over 3 years

No more than 10%
overhead in time to
solution, no
degradation in scaling

2 codes adopt
ESMF with < 2%
lines of code
changed, or within
120 FTE-hours

8 new applications
comprised of
never-before
coupled
components

15 applications use
ESMF component
coupling services
and 3+ utilities

Performance Ease of AdoptionInteroperabilityReuse

10

What is ESMF?
1. ESMF provides tools for turning model

codes into components with standard
interfaces and standard drivers

2. ESMF provides data structures and
common utilities that components use

i. to organize codes
ii. to improve performance

portability
iii. for common services such as data

communications, regridding, time
management and message logging

ESMF Infrastructure
Data Classes: Bundle, Field, Grid, Array

Utility Classes: Clock, LogErr, DELayout, Machine

ESMF Superstructure
AppDriver

Component Classes: GridComp, CplComp, State

User Code

11

GEOS-5

surface fvcore gravity_wave_drag

history agcm

dynamics physics

chemistry moist_processes radiation turbulence

infrared solar lake land_ice data_ocean land

vegetation catchment

coupler

coupler coupler

coupler

coupler

coupler

coupler

• Each box is an ESMF component
• Every component has a standard interface so that it is swappable
• New components can easily be added to the hierarchical system
• Data in and out of components are packaged as state types
• Coupling tools include regridding and redistribution methods

Application Example: GEOS-5
AGCM

12

1 BACKGROUND, GOALS, AND
SCOPE
• Overview
• ESMF and the Community
• The ESMF Organization
• Goals and Rationale for Adoption
• Exercises

13

ESMF is a Community Effort
• Collaborators and customers include:

◦ NSF NCAR
◦ NOAA GFDL, NOAA NCEP
◦ DOE LANL, DOE ANL
◦ NASA GMAO, NASA Land Information Systems, NASA

GISS
◦ DoD Navy, Air Force, and Army (new)
◦ University of Michigan, UCLA, MIT

• Users define development priorities
• Users actively test and evaluate the framework design and

implementation
• ~15% of ESMF source code is from user contributions

(IO from WRF, resource file manager from GMAO, regridding
from Los Alamos)

14

Open Source Development
• Open source license (GPL)
• Open source environment (SourceForge)
• Open repositories: web-browsable CVS repositories accessible from the

ESMF website
◦ for source code
◦ for contributions (currently porting contributions and performance testing)

• Open development priorities and schedule: priorities set based on user
meetings, telecons, and mailing list discussions, web-browsable task lists

• Open testing: 1000+ tests are bundled with the ESMF distribution and can be
run by users

• Open port status: results of nightly tests on many platforms are web-browsable
• Open metrics: test coverage, lines of code, requirements status are updated

regularly and are web-browsable

15

Open Source Constraints
• ESMF does not allow unmoderated check-ins to its main source

CVS repository (though there is minimal check-in oversight for the
contributions repository)

• ESMF has a co-located, line managed Core Team whose members
are dedicated to framework implementation and support – it does
not rely on volunteer labor

• ESMF actively sets priorities based on user needs and feedback
• ESMF requires that contributions follow project conventions and

standards for code and documentation
• ESMF schedules regular releases and meetings

The above are necessary for development to proceed at the pace
desired by sponsors and users, and to provide the level of quality
and customer support necessary for codes in this domain

16

Related Projects

• PRISM is an ongoing European Earth system
modeling infrastructure project

• Involves current state-of-the-art atmosphere,
ocean, sea-ice, atmospheric chemistry, land-
surface and ocean-biogeochemistry models

• 22 partners: leading climate researchers and
computer vendors, includes MPI, KNMI, UK
Met Office, CERFACS, ECMWF, DMI

• ESMF is working with PRISM to merge
frameworks and develop common conventions

• CCA is creating a minimal interface and sets of
tools for linking high performance components.
CCA can be used to implement frameworks and
standards developed in specific domains (such as
ESMF).

• Collaborators include LANL, ANL, LLNL, ORNL,
Sandia, University of Tennessee, and many more.
Ongoing ESMF collaboration with CCA/LANL on
language interoperability.

• Working prototype demonstrating CCA/ESMF
interoperability, to be presented at SC2003.

For joint use with PRISM, ESMF
developed a component database
to store component import/export
fields and component descriptions

For joint use with PRISM, ESMF
developed a component database
to store component import/export
fields and component descriptions

17

1 BACKGROUND, GOALS, AND
SCOPE
• Overview
• ESMF and the Community
• The ESMF Organization
• Goals and Rationale for Adoption
• Exercises

18

ESMF Project

Develops and manages the
ESMF Product

DoD BEI Project

Generates ESMF-compliant science
applications

NASA Modeling, Analysis,
and Prediction Environment

Generates ESMF-compliant science
applications NOAA ESMF Adoption

Project

Generates ESMF-compliant science
applications

Application Integration Projects and Development
Plug-Ins from the DoD, NASA, NOAA, and
elsewhere interact with the ESMF Project.
Areas of overlap are contributions of funds and code
to the core development effort, and participation in
ESMF development and management.

Other Application
Integration Projects and
Development Plug-Ins

CCSM, WRF, university applications,
more ….

ESMF and Application Integration
Projects

19

The ESMF Product

ESMF DISTRIBUTION

Source
 Standard API
 Reference implementation
 Documentation

Testing
 Unit testing
 System testing

Customer support

Training program

COLLABORATION
ENVIRONMENT

Project website
 Downloads and documents
 Metrics (SLOC, test coverage)
 Web-browsable code repository
 Support and mailing lists
 On-line daily test results
 Project contacts
 More ….

Regular reviews and telecons

Team, B oard and Community
meetings

USERS

MANAGEMENT

SPONSORS

VENDORS

RELATED
PROJECTS

The ESMF Product

20

The ESMF Project

The ESMF Project

Computer science
community and other
infrastructure projects

Ongoing dialogue and
collaboration with

CCA, PRISM, and other efforts

Science Customers
Users of and contributors

to the ESMF software

Vendors
Ongoing dialogue on

requirements and current
capabilities

Executive Management
Determines funding levels,
guides and evaluates the

Working Project

Working Project
Generates the ESMF product,

including interface,
implementation, maintenance,

support and training

• The ESMF Project is responsible for directing and delivering the ESMF Product.
• The organization is designed to encourage collaboration at all levels:

hands on developer/user, institutional director, agency

21

The ESMF Working Project

The Working Project

Implementation
priorities

API and functional change requests Joint Specification Team

ESMF reference
implementation and support

Core Team

Change Review Board

Requirements,
code contributions,

functional validation,
API specification

• Implements the ESMF product day-to-day
• Three parts:

◦ Core Team – development and maintenance, support and training, testing, web
◦ Joint Specification Team – hands-on users and developers, weekly telecons
◦ Change Review Board – priorities and schedules for code changes, newly

established

22

Executive Management

Executive Management

Interagency Working
Group

Funding decisions

Executive Board
Scientific and technical

guidance

Review Commitee
ESMF Project evaluation

Advisory Board
Liaison with related projects

informs informs

joint
sessions

• Oversees the project
• Four parts

◦ Executive Board – sets overall priorities and direction
◦ Advisory Board – guidance and coordination
◦ Interagency Working Group – agency executives and sponsors
◦ Review Committee - evaluation

23

More Information

For more on the ESMF organization, see the ESMF Draft Project
Plan on the ESMF website:

http://www.esmf.ucar.edu > Publications & Talks

24

1 BACKGROUND, GOALS, AND
SCOPE
• Overview
• ESMF and the Community
• The ESMF Organization
• Goals and Rationale for Adoption
• Exercises

25

ESMF Goals
1. Increase scientific productivity by making modeling and analysis software

components much easier to build, combine, and exchange, and by enabling
modelers to take full advantage of high-end computers.

2. Unify the national and international Earth system modeling community through
a common modeling paradigm and regular interactions at all levels.

26

Why Should I Adopt ESMF If I
Already Have a Working Model?

• There is an emerging pool of other ESMF-based science components that you will be
able to interoperate with to create applications - a framework for interoperability is only
as valuable as the set of groups that use it, and ESMF has a broad customer base.

• It will reduce the amount of infrastructure code that you need to maintain and write, and
allow you to focus more resources on science development.

• ESMF provides solutions to two of the hardest problems in model development:
structuring large, multi-component applications so that they are easy to use and extend,
and achieving performance portability on a wide variety of parallel architectures.

• It may be better software (better features, better performance portability, better tested,
better documented and better funded into the future) than the infrastructure software
that you are currently using.

• Community development and use means that the ESMF software is widely reviewed
and tested, and that you can leverage contributions from other groups.

27

1 BACKGROUND, GOALS, AND
SCOPE
• Overview
• ESMF and the Community
• The ESMF Organization
• Goals and Rationale for Adoption
• Exercises

28

Exercises
1. Sketch a diagram of the major components in your application and how they are

connected.
2. Introduction of tutorial participants.

29

Application Diagram

30

2 STATUS OF DEVELOPMENT
AND APPLICATIONS
• Development Status and Priorities
• Performance
• NASA CAN ESMF Project Status
• BEI Codes
• Exercises

31

ESMF Development Status
• Overall architecture is well-defined and well-accepted
• Components and low-level communications stable
• Logically rectangular grids with regular and arbitrary distributions

implemented
• On-line parallel regridding (bilinear, 1st order conservative) completed

and optimized
• Other parallel methods, e.g. halo, redistribution, low-level comms

implemented
• Utilities such as time manager, logging, and configuration manager

usable and adding features
• Virtual machine with uniform interface to shared / distributed memory

implemented, hooks for load balancing implemented

32

ESMF Platform Support
• IBM AIX (32 and 64 bit addressing)
• SGI IRIX64 (32 and 64 bit addressing)
• SGI Altix (64 bit addressing)
• Cray X1 (64 bit addressing)
• Compaq OSF1 (64 bit addressing)
• Linux Intel (32 and 64 bit addressing, with mpich and lam)
• Linux PGI (32 bit addressing, with mpich)
• Linux NAG (32 bit addressing, with mpich)
• Linux Absoft (32 bit addressing, with mpich)
• Linux Lahey (32 bit addressing, with mpich)
• Mac OS X with xlf (32 bit addressing, with lam)

33

ESMF Distribution Summary
• Fortran interfaces and complete documentation
• Many C++ interfaces, no manuals yet
• Serial or parallel execution (mpiuni stub library)
• Sequential or concurrent execution
• SPMD support

34

ESMF Near-Term Priorities,
FY05

• Concurrent components working on all platforms
• Reworked design and implementation of array / grid / field

interfaces and array-level communications
• Optimized wholly irregular grid distributions, regridding and low-

level communications
• Grid merges
• Unstructured grids
• Read/write interpolation weights and grid specifications
• Asynchronous I/O
• Support for real time types and other enhancements to utilities

35

ESMF Longer-Term Priorities
• Improve portability, performance, and error handling, and expand

and improve documentation, tutorial materials, and training program
• Develop and assimilate contributions of new functionality into the

ESMF software (nested and adaptive grids, data assimilation
support including adjoints, load balancing, MPMD, improved IO and
utilities)

• Transition the collaboration environment and project organization so
that it is effective with multiple sponsors and a larger number of
collaborators

• Expand the program of collaboration with CCA, PRISM and other
national and international infrastructure initiatives;

• Begin design and implementation of Earth System Modeling
Environment (ESME)

36

ESMF Current Challenges

• Quality and correctness of source code, especially numerical
methods

• Process for design and interface review
• Development of advanced grids and regridding
• Requirements database and requirements tracking – new

software packages being explored
• Clear, complete, carefully edited documentation and training

program materials

37

Some Metrics …
• Core Team currently has

◦ 2 FTE testers,
◦ 1/2 FTE performance analyst,
◦ 5 FTE developers
◦ 1 FTE admin/web support
◦ 1 manager

• Test suite currently consists of
◦ ~1200 unit tests
◦ ~15 system tests,
◦ ~35 examples

runs every night on ~12 platforms
• ~273 ESMF interfaces implemented, ~250 fully or partially tested, ~91% fully or

partially tested.
• ~142,000 SLOC, ~26,000 lines of text
• ~63 open bugs, ~316 closed bugs
• ~785 downloads

38

More Information

For more on scheduling and releases, see the on-line
listing:

http://www.esmf.ucar.edu > Development

Tasks are on the ESMF SourceForge site, under ESMF
Core Tasks.

39

2 STATUS OF DEVELOPMENT
AND APPLICATIONS
• Development Status and Priorities
• Performance
• NASA CAN ESMF Project Status
• BEI Codes
• Exercises

40

ESMF Component Overhead

• Measures overhead
of ESMF
superstructure in
NCEP Spectral
Statistical Analysis
(SSI), ~1% overall

• Run on NCAR IBM

• Runs done by JPL
staff, confirmed by
NCEP developers

41

ESMF Regridding
Performance, Initialization

Regrid Initialization Time Comparison

0

20

40

60

80

100

120

4 8 16 32 64 128

Number of Processors

Ti
m

e
(s

ec
on

ds
)

ESMF RC to R

ESMF C to R

MCT RC to R

ESMF R to R

• Comparison with the
Argonne Model
Coupling Toolkit
(MCT) bundled with
CCSM

• Run on NCAR IBM

• Runs done by JPL
staff, not yet
confirmed by
Argonne developers

42

ESMF Regridding
Performance, Run Time

• Comparison with the
Argonne Model
Coupling Toolkit
(MCT) bundled with
CCSM

• Run on NCAR IBM

• Runs done by JPL
staff, not yet
confirmed by
Argonne developers

Figure 2. Regrid Run Time Comparison between ESMF and MCT

0

10

20

30

40

50

60

70

4 8 16 32 64 128

Number of processors

Tim
e (m

sec)

ESMF RC to R

ESMF C to R

MCT RC to R

ESMF R to R

43

2 STATUS OF DEVELOPMENT
AND APPLICATIONS
• Development Status and Priorities
• Performance
• NASA CAN ESMF Project Status
• BEI Codes
• Exercises

44

NASA CAN Deliverable
Schedule and Metrics

• Public delivery of prototype ESMF v1.0 in May 2003
• Completion of first coupling demonstrations using ESMF in March

2004
• Delivered ESMF v2.0 in June 2004
• Delivery of ESMF v2.1.0 in January 2005 (includes concurrency)
• Delivery of ESMF v2.2.0 anticipated in May 2005
• All project codes scheduled to achieve partial adoption (use of the

ESMF component layer and coupling) by November 2004
• All project codes scheduled to achieve full adoption (use of the

component layer and coupling plus 3 or more utilities) by June
2005

45

NASA CAN Modeling Codes

GMAO atmospheric GCM coupled with ocean GCMGMAO

CCSM2 including CAM and CLM coupled with POP ocean and data
ice model

NCAR/LANL

MITgcm regional and global ocean
MITgcm coupled atmosphere/oceanMIT
FMS MOM4 ocean model
FMS spectral atmosphere
FMS B-grid atmosphereGFDL
APPLICATIONSOURCE

46

NASA CAN Data Assimilation
Codes

MITgcm century / millennium adjoint sensitivityMIT

ODAS with OI analysis system with ~10K observations/dayGMAO

WRF regional atmospheric model at 22km resolution CONUS
forecast

Global Spectral Forecasting Model

Gridpoint Statistical Interpolation (GSI) System (joint with GMAO)
replaces Spectral Statistical Interpolation (SSI)

NCEP

GEOS-5 Atmospheric General Circulation Model
replaces NSIPP Atmospheric General Circulation Model

Gridpoint Statistical Interpolation (GSI) System (joint with NCEP)
replaces Physical-space Statistical Analysis System (PSAS)

GMAO
APPLICATIONSOURCE

47

ESMF Adoption Legend
Infrastructure (i = 1…6)
Number indicates how many ESMF utilities are being used internal to the code.
Superstructure (i=1…8)
• Base version of code selected, and configuration decided on (includes version,

target platform, validation criteria).
• User component is restructured in an ESMF manner, but may not use ESMF

software.
• User component builds valid states and presents standard ESMF interfaces.
• All gridded components run as ESMF stand-alone components - complete for non-

coupled applications.
• A system with all components and stub coupler(s) links and runs, even though the

coupler may not do anything, or may not use ESMF regridding.
• One field is transferred in some manner through the coupled system.
• ESMF regridding is used if needed.
• All active fields are correctly transferred, and experiment is verified by outside

source.

48

ESMF Adoption Status
0 1 2 3 4 5 6 7 8

EVA Test Atmosphere

EVA Test Coupled Atm/Ocn

GFDL B-Grid Atm

GFDL Spectral Atm

GFDL MOM4 Ocean

MITgcm Coupled Atm/Ocn

MITgcm Regional Ocn

NCAR CAM / fvCAM

NCAR CLM

LANL POP

LANL CICE

CCSM

GEOS-5 Coupled Atm/Ocn

NCEP GFS

NCEP SSI

NCEP/NCAR WRF

ODAS w ith NSIPP Ocn

MITgcm Adjoint

GSI Analysis

GEOS-5 Atmosphere
Superstructure

Infrastructure

TARBALL

TARBALL

49

NASA CAN Interoperability
Demonstrations

NEW SCIENCE ENABLEDCOUPLED CONFIGURATION

Development of hurricane prediction capability.NCEP WRF / Ocean Model

Improved climate predictive capability: climate sensitivity to
large component interchange, optimized initial conditions.

NCAR CAM / MITgcm ocn

Intercomparison of systems for NASA/NOAA joint center for
satellite data assimilation.

NCAR fvCAM/ NCEP analysis

Intercomparison of systems for NASA/NOAA joint center for
satellite data assimilation.

GMAO GEOS-5/ NCEP GSI
Assimilated initial state for SI.NSIPP atm / NCEP analysis

Sea ice model for extension of SI system to centennial time
scales.

GMAO ocean / LANL CICE
NCEP seasonal forecasting system.GFDL MOM4 / NCEP forecast

Global biogeochemistry (CO2, O2), SI timescales.GFDL B-grid atm / MITgcm
ocn

50

NASA CAN Interoperability
Experiment Legend

1. Base version of both codes in experiment selected, and configuration decided upon
(e.g. target platform, one/two way coupling, fields sent, duration).

2. Both codes run standalone as ESMF components, using component constructs but
not necessarily creating valid states.

3. Fields that will be in import/export states of both codes match up with each other.
4. Both codes create valid ESMF import/export states, including fields with ESMF

grids.
5. Draft coupler is written and full system with codes, stub coupler, and ESMF can be

linked and run on target platform.
6. One field is transferred in some manner in one direction through the coupler.
7. ESMF regridding is used if needed.
8. All fields active in the experiment are correctly transferred and the experiment

verified by outside source.

51

NASA CAN Interoperability
Experiment Status

0 1 2 3 4 5 6 7 8

GFDL B-Grid Atm/MITgcm Ocean

GFDL MOM4 Ocean/NCEP Atm

GMAO Ocean/LANL CICE

Aries Atm/SSI Analysis

fvCAM/SSI Analysis

GEOS-5 Atm/GSI Analysis

CAM/MITgcm Ocean

WRF/ Regional Ocean

TARBALL

52

2 STATUS OF DEVELOPMENT
AND APPLICATIONS
• Development Status and Priorities
• Performance
• NASA CAN ESMF Project Status
• BEI Codes
• Exercises

53

Select BEI Modeling Codes

HAF Kinematic Solar Wind
Global Assimilation of Ionospheric Measurements (GAIM)

Air Force

Hybrid Coordinate Ocean Model (HYCOM)
Navy Coastal Ocean Model (NCOM)
Navy Layered Ocean Model (NLOM)
Coupled Ocean Atmosphere Mesoscale Prediction System
(COAMPS)
Global and regional Wave Model (WAM)
Advanced Circulation coastal and estuarine model (ADCIRC)

Navy
APPLICATIONSOURCE

54

2 STATUS OF DEVELOPMENT
AND APPLICATIONS
• Development Status and Priorities
• Performance
• NASA CAN ESMF Project Status
• BEI Codes
• Exercises

55

Exercises
1. Locate on the ESMF website:

• The Reference Manual, User’s Guide and Developer’s Guide
• The Project Plan
• The current task list
• The modules in the contributions repository
• The weekly regression test schedule
• Known bugs from the last public release
• The % of public interfaces tested
• The schedule of Early Adopter (Users Group) meetings
• The ESMF Support Policy

56

3 DESIGN AND PRINCIPLES
OF ESMF
• Computational Characteristics of Weather and Climate
• Design Strategies
• Parallel Computing Definitions
• Framework-Wide Behavior
• Required Methods
• Class Structure
• Exercises

57

Computational Characteristics
of Weather/Climate

• Mix of global transforms and local communications
• Load balancing for diurnal cycle, event (e.g. storm) tracking
• Applications typically require 10s of GFLOPS,

100s of PEs – but can go to 10s of TFLOPS, 1000s of PEs
• Required Unix/Linux platforms span laptop to

Earth Simulator
• Multi-component applications: component

hierarchies, ensembles, and exchanges;
components in multiple contexts

• Data and grid transformations between
components

• Applications may be MPMD/SPMD,
concurrent/sequential, combinations

• Parallelization via MPI, OpenMP, shmem, combinations
• Large applications (typically 100,000+ lines of source code)

Platforms

assim

sea iceocean

landatm

physics dycore

assim_atm

atmland

Seasonal Forecast
coupler

58

3 DESIGN AND PRINCIPLES
OF ESMF
• Computational Characteristics of Weather and Climate
• Design Strategies
• Parallel Computing Definitions
• Framework-Wide Behavior
• Required Methods
• Class Structure
• Exercises

59

Design Strategy:
Intracomponent Communication
All communication in ESMF is handled within components. This allows the
architecture of the framework to be independent of the communication strategy.
The result is that there is flexibility in implementation of communications and
component drivers are straightforward.

climate_comp

ocn_comp atm_comp

atm_phys

phys2dyn_coupler

atm_dyn
PET

atm2ocn _coupler

As a consequence, Coupler
Components must be defined on
the union of the PETs of all the
Gridded Components that they
couple.

In this example, in order to send
data from the atmosphere
Component to the ocean, the
atm2ocn_coupler mediates the
send.

60

Design Strategy:
Hierarchical Applications
Since each ESMF application is also a Gridded Component, entire ESMF
applications can be nested within larger applications. This strategy can be used to
systematically compose very large, multi-component codes.

GEOS-5

surface fvcore gravity_wave_drag

history agcm

dynamics physics

chemistry moist_processes radiation turbulence

infrared solar lake land_ice data_ocean land

vegetation catchment

coupler

coupler coupler

coupler

coupler

coupler

coupler

61

Design Strategy: Modularity
Gridded Components don’t have access to the internals of other Gridded
Components, and don’t store any coupling information. Gridded Components
pass their States to other components through their argument list.
Since components are not hard-wired into particular configurations and do not
carry coupling information, components can be used more easily in multiple
contexts.

atm_comp

NWP application

Seasonal prediction

Standalone for basic research

62

Design Strategy:
Uniform Communication API
The same programming interface is used for shared memory, distributed
memory, and combinations thereof. This buffers the user from variations and
changes in the underlying platforms.
Virtual Machine (VM) = abstraction of machine architecture (num_nodes,
num_pes_per_node, etc.)
DE = a decomposition element - may be virtual, thread, MPI process
DELayout = an arrangement of DEs, in which dimensions requiring faster
communication may be specified and resources arranged accordingly

4 x 3 DELayout:
The data in a Grid is decomposed according to the
number and topology of DEs in the DELayout

63

3 DESIGN AND PRINCIPLES
OF ESMF
• Computational Characteristics of Weather and Climate
• Design Strategies
• Parallel Computing Definitions
• Framework-Wide Behavior
• Required Methods
• Class Structure
• Exercises

64

Elements of Parallelism
• Decomposition Element (DE)

◦ In ESMF a decomposition is represented as a set of Decomposition
Elements (DEs).

◦ A decomposition that has four pieces in the x direction and three pieces in
the y direction would be 4 x 3 DEs

◦ A DE is not tied to a particular chunk of data
◦ A DE is not tied to a particular processor or other compute resource
◦ Sets of DEs are represented by the DELayout class

• Persistent Execution Thread (PET)
◦ Path for executing an instruction sequence
◦ Sets of PETs are represented by the Virtual Machine (VM) class

• Processing Element (PE)
◦ The smallest physical processing unit available on a particular hardware

platform

65

Modes of Parallelism
• Serial vs parallel

◦ Serial code runs on one Persistent Execution Thread (PET)
◦ Parallel code runs on multiple PETs

• Sequential vs concurrent
◦ In sequential mode components run one after the other on the same set of

PETs
◦ In concurrent mode components run at the same time on different sets of

PETs
• SPMD vs MPMD

◦ In Single Program Multiple Datastream (SPMD) mode the same program runs
across all PETs in the application - components may run sequentially or
concurrently.

◦ In Multiple Program Multiple Datastream (MPMD) mode the application
consists of separate programs launched as separate executables -
components may run concurrently or sequentially, but in this mode almost
always run concurrently

66

Local vs Global
• Global means across the whole object or the whole application,

depending on the context
• Local must be qualified in ESMF

◦ PE local?
◦ PET local?
◦ DE local?

67

3 DESIGN AND PRINCIPLES
OF ESMF
• Computational Characteristics of Weather and Climate
• Design Strategies
• Parallel Computing Definitions
• Framework-Wide Behavior
• Required Methods
• Class Structure
• Exercises

68

Framework-Wide Behavior
ESMF has a set of interfaces and behaviors that hold across the
entire framework. This consistency helps make the framework
easier to learn and understand.

For more information, see Sections 6-8 in the Reference Manual.

69

Classes and Objects in ESMF
• The ESMF Application Programming Interface (API) is based on

the object-oriented programming notion of a class. A class is a
software construct that’s used for grouping a set of related
variables together with the subroutines and functions that
operate on them. We use classes in ESMF because they help to
organize the code, and often make it easier to maintain and
understand.

• A particular instance of a class is called an object. For example,
Field is an ESMF class. An actual Field called temperature is an
object.

70

Classes and Fortran
• The Fortran interface is implemented so that the variables

associated with a class are stored in a derived type. For
example, an ESMF_Field derived type stores the data array,
grid information, and metadata associated with a physical field.

• The derived type for each class is stored in a Fortran module,
and the operations associated with each class are defined as
module procedures. We use the Fortran features of generic
functions and optional argumentsextensively to simplify our
interfaces.

71

Interface Convention
Methods in ESMF generally look like this:

call ESMF_<ClassName><Operation>(classname,
firstArgument,

secondArgument, ..., rc)
where

<ClassName> is the class name,
<method> is the name of the action to be performed,
classname is a variable of the derived type associated with the class,
the *arguments are whatever other variables are required for the

operation,
and rc is a return code.

72

Standard Methods
• ESMF_<Class>Create() and ESMF_<Class>Destroy(), for

allocating and constructing classes and freeing the memory for classes and
destructing their internals.

• ESMF_<Class>Set() and ESMF_<Class>Get(), for setting and
retrieving a particular item or flag. In general, these methods are overloaded for
all cases where the item can be manipulated as a name/value pair.

• ESMF_<Class>Add(), ESMF_<Class>Get(), and
ESMF_<Class>Remove() for manipulating items that can be appended or
inserted into a list of like items within a class.

• ESMF_<Class>Print(), for printing the contents of a class to standard
out. This method is mainly intended for debugging.

• ESMF_<Class>ReadRestart() and
ESMF_<Class>WriteRestart(), for saving the contents of a class and
restoring it exactly. These are not yet implemented.

• ESMF_<Class>Validate(), for determining whether a class is internally
consistent.

73

Deep and Shallow Classes
• Deep classes require ESMF_<Class>Create()and
ESMF_<Class>Destroy() calls. They take significant time
to set up (off the heap) and should not be created in a time-critical
portion of code. Deep objects persist even after the method in
which they were created has returned. Most classes in the ESMF,
including Fields, Bundles, Arrays, Grids and Clocks, fall into this
category.

• Shallow classes do not require ESMF_<Class>Create()
and ESMF_<Class>Destroy() calls. They can simply be
declared and their values set using an ESMF_<Class>Set()
call. Shallow classes do not take long to set up (off the stack) and
can be declared and set within a time-critical code segment.
Shallow objects stop existing when the method in which they were
declared has returned. Times and Time Intervals are examples of
shallow classes.

74

3 DESIGN AND PRINCIPLES
OF ESMF
• Computational Characteristics of Weather and Climate
• Design Strategies
• Parallel Computing Definitions
• Framework-Wide Behavior
• Required Methods
• Class Structure
• Exercises

75

Required Calls
• The modules for ESMF are bundled together and can be

accessed with a single USE statement, USE ESMF_Mod.
• ESMF_Initialize() and ESMF_Finalize() are

required methods that must bracket the use of ESMF within an
application. They manage the resources required to run ESMF
and shut it down gracefully.

76

Initialize, Run, and Finalize
• ESMF_<Grid|Cpl>CompInitialize(),

ESMF_<Grid|Cpl>CompRun(), and
ESMF_<Grid|Cpl>CompFinalize()
are component methods that are used at the highest level within ESMF. The
content of these methods is not part of the ESMF. Instead the methods call
into associated Fortran subroutines within user code.

• User components must be segmented into clear initialize, run, and finalize
methods that use ESMF prescribed interfaces before they can become ESMF
components.

77

SetServices
• Every ESMF_<Grid|Cpl>Comp is required to provide and document a set

services routine.
• The function of the set services subroutine is to register the rest of the

required functions in the component, currently initialize, run, and finalize
methods. The ESMF method
ESMF_<Grid|Cpl>CompSetEntryPoint() should be called for
each of the required subroutines.

• The AppDriver or parent component code which is creating a component will
first call ESMF_<Grid|Cpl>CompCreate() to create an "empty"
component, and then must call the component-specific set services routine to
associate ESMF-standard methods to user-code methods, and to create the
VM in which this component will run.

• After set services has been called, the framework now will be able to call the
component’s initialize, run, and finalize routines as required.

78

SetServices (cont.)
• The set services subroutine name is not predefined (it does not need to be

“SetServices” - it is set by the component writer.
• The names of the initialize, run, and finalize user-code subroutines do not

need to be public - in fact it is far better for them to be private to lower the
chances of public symbol clashes between different components.

• Within the set services routine, the user can also register a private data block
by calling the ESMF_<Grid|Cpl>CompSetInternalState
method.

See Section 14.3 in the Reference Manual for set services examples and 14.6
for ESMF_GridCompSetServices() and
ESMF_GridPointSetEntryPoint() interfaces.

79

3 DESIGN AND PRINCIPLES
OF ESMF
• Computational Characteristics of Weather and Climate
• Design Strategies
• Parallel Computing Definitions
• Framework-Wide Behavior
• Required Methods
• Class Structure
• Exercises

80

ESMF Class Structure

DELayout
Communications

State
Data imported or exported

Bundle
Collection of fields

GridComp
Land, ocean, atm, … model

F90

Superstructure

Infrastructure

Field
Physical field, e.g. pressure

Grid
LogRect, Unstruct, etc.

Data Communications

C++

Regrid
Computes interp weights

CplComp
Xfers between GridComps

Utilities
Virtual Machine, TimeMgr, LogErr, IO, ConfigAttr, Base etc.

Array
Hybrid F90/C++ arrays Route

Stores comm paths

DistGrid
Grid decomposition

PhysGrid
Math description

81

Current Class Hierarchy

82

Planned Changes

83

3 DESIGN AND PRINCIPLES
OF ESMF
• Computational Characteristics of Weather and Climate
• Design Strategies
• Parallel Computing Definitions
• Framework-Wide Behavior
• Required Methods
• Class Structure
• Exercises

84

Exercises
1. Download Version 2.1.0.
2. Compile.

85

4 CLASSES AND FUNCTIONS

• ESMF Superstructure Classes
• ESMF Infrastructure Classes: Data Structures
• ESMF Infrastructure Classes: Utilities
• Exercises

86

ESMF Superstructure Classes
See Sections 12-16 in the Reference Manual.

• Gridded Component
◦ Models, data assimilation systems - “real code”

• Coupler Component
◦ Data transformations and transfers between Gridded

Components
• State – Packages of data sent between Components
• Application Driver – Generic driver

87

ESMF Components
• An ESMF component has two parts, one that is supplied by the ESMF and

one that is supplied by the user. The part that is supplied by the framework is
an ESMF derived type that is either a Gridded Component (GridComp) or a
Coupler Component (CplComp).

• A Gridded Component typically represents a physical domain in which data is
associated with one or more grids - for example, a sea ice model.

• A Coupler Component arranges and executes data transformations and
transfers between one or more Gridded Components.

• Gridded Components and Coupler Components have standard methods,
which include initialize, run, and finalize. These methods can be multi-phase.

88

ESMF Components (cont.)
• The second part of an ESMF component is user code, such as a

model or data assimilation system. Users set entry points within
their code so that it is callable by the framework. In practice,
setting entry points means that within user code there are calls to
ESMF methods that associate the name of a Fortran subroutine
with a corresponding standard ESMF operation.

• EXAMPLE A user-written initialization routine called
popOceanInit might be associated with the standard initialize
routine of an ESMF Gridded Component named “POP” that
represents an ocean model.

89

ESMF Gridded Components
• Gridded Components are models, data assimilation systems, diagnostics, etc.
• Gridded Components can be nested
• Gridded Components can be run as ensembles
• Depending on how the current code is structured, may be possible to wrap

without structural changes
• Or might use ESMF conversion as a reason to make structural changes!
• States for import/export
• Sequential and concurrent modes of execution possible
• Registration routine (SetServices) to associate user code routines with

standard ESMF intialize/run/finalize methods

90

ESMF Coupler Components

• Coupler Components perform the transformations and transfers
between Gridded Components

• States for import/export
• Not automatic - must to be customized for each new

configuration
• Expected to be thin, however - making use of the transformation

routines in ESMF

91

ESMF States
• All data passed between Components is in the form of States

and States only
• Description/reference to other ESMF data objects
• Data is referenced so does not need to be duplicated
• Can be Bundles, Fields, Arrays, States, or name-placeholders

92

Application Driver
• Small, generic program that contains the “main” for an ESMF

application.

93

4 CLASSES AND FUNCTIONS

• ESMF Superstructure Classes
• ESMF Infrastructure Classes: Data Structures
• ESMF Infrastructure Classes: Utilities
• Exercises

94

ESMF Infrastructure Data Classes

Model data is contained in a hierarchy of multi-use classes. The
user can reference a Fortran array to an Array or Field, or
retrieve a Fortran array out of an Array or Field.

• Array – holds a Fortran array (with other info, such as halo size)
• Field – holds an Array, an associated Grid, and metadata
• Bundle – collection of Fields on the same Grid bundled together

for convenience, data locality, latency reduction during
communications
Supporting these data classes is the Grid class, which represents
a numerical grid

95

Grids
See Section 25 in the Reference Manual for interfaces and examples.

• The ESMF Grid class represents all aspects of the computational domain
and its decomposition in a parallel-processing environment It has
methods to internally generate a variety of simple grids

• The ability to read in more complicated grids provided by a user is not yet
implemented

• ESMF Grids are currently assumed to be two-dimensional, logically-
rectangular horizontal grids, with an optional vertical grid whose
coordinates are independent of those of the horizontal grid

• Each Grid is assigned a staggering in its create method call, which helps
define the Grid according to typical Arakawa nomenclature.

96

Arrays
See Section 22 in the Reference Manual for interfaces and
examples.

• The Array class represents a multidimensional array.
• An Array can be real, integer, or logical, and can possess up to

seven dimensions. The Array can be strided.
• The first dimension specified is always the one which varies

fastest in linearized memory.
• Arrays can be created, destroyed, copied, and indexed.

Communication methods, such as redistribution and halo, are
also defined.

97

Fields
See Section 20 in the Reference Manual for interfaces and examples.

• A Field represents a scalar physical field, such as temperature.
• ESMF does not currently support vector fields, so the components of a vector

field must be stored as separate Field objects.
• The ESMF Field class contains the discretized field data, a reference to its

associated grid, and metadata.
• The Field class provides methods for initialization, setting and retrieving data

values, I/O, general data redistribution and regridding, standard
communication methods such as gather and scatter, and manipulation of
attributes.

98

Bundles
See Section 18 in the Reference Manual for interfaces and examples.

• The Bundle class represents “bundles” of Fields that are discretized on the
same Grid and distributed in the same manner.

• Fields within a Bundle may be located at different locations relative to the
vertices of their common Grid.

• The Fields in a Bundle may be of different dimensions, as long as the Grid
dimensions that are distributed are the same.

• In the future Bundles will serve as a mechanism for performance optimization.
ESMF will take advantage of the similarities of the Fields within a Bundle in
order to implement collective communication, IO, and regridding.

99

ESMF Communications
See Section 27 in the Reference Manual for a summary of
communications methods.

• Halo
◦ Updates edge data for consistency between partitions

• Redistribution
◦ No interpolation, only changes how the data is decomposed

• Regrid
◦ Based on SCRIP package from from Los Alamos
◦ Methods include bilinear, conservative

• Bundle, Field, Array-level interfaces

100

ESMF DataMap Classes
These classes give the user a systematic way of
expressing interleaving and memory layout, also
hierarchically (partially implemented, rework expected)

• ArrayDataMap – relation of array to decomposition and
grid, row / column major order, complex type interleave

• FieldDataMap – interleave of vector components
• BundleDataMap – interleave of Fields in a Bundle

101

4 CLASSES AND FUNCTIONS

• ESMF Superstructure Classes
• ESMF Infrastructure Classes: Data Structures
• ESMF Infrastructure Classes: Utilities
• Exercises

102

ESMF Utilities
• Time Manager
• Configuration Attributes (replaces namelists)
• Message logging
• Communication libraries
• Regridding library (parallelized, on-line SCRIP)
• IO (barely implemented)
• Performance profiling (not implemented yet, may simply use

Tau)

103

Time Manager
See Sections 32-37 in the Reference Manual for more information.

Time manager classes are:
• Calendar
• Clock
• Time
• Time Interval
• Alarm
These can be used independent of other classes in ESMF.

104

Calendar
A Calendar can be used to keep track of the date as an ESMF Gridded Component
advances in time. Standard calendars (such as Gregorian and 360-day) and user-
specified calendars are supported. Calendars can be queried for quantities such as
seconds per day, days per month, and days per year.

Supported calendars are:
• Gregorian The standard Gregorian calendar, proleptic to 3/1/-4800.
• no-leap The Gregorian calendar with no leap years.
• Julian Day A Julian days calendar.
• 360-day A 30-day-per-month, 12-month-per-year calendar.
• no calendar Tracks only elapsed model time in seconds.

105

Clock and Alarm
Clocks collect the parameters and methods used for model time
advancement into a convenient package. A Clock can be queried
for quantities such as start time, stop time, current time, and time
step. Clock methods include incrementing the current time, and
determining if it is time to stop.
Alarms identify unique or periodic events by “ringing” - returning a
true value - at specified times. For example, an Alarm might be set
to ring on the day of the year when leaves start falling from the trees
in a climate model.

106

Time and Time Interval

A Time represents a time instant in a particular calendar, such as
November 28, 1964, at 7:31pm EST in the Gregorian calendar. The
Time class can be used to represent the start and stop time of a
time integration.
Time Intervals represent a period of time, such as 300 milliseconds.
Time steps can be represented using Time Intervals.

107

Clock Creation and Timestepping
See Section 36.2 in the Reference Manual for examples and
interfaces.

108

Config Attributes
See Section 38 in the Reference Manual for interfaces and
examples.

• ESMF Configuration Management is based on NASA DAO’s
Inpak 90 package, a Fortran 90 collection of routines/functions
for accessing Resource Files in ASCII format.

• The package is optimized for minimizing formatted I/O,
performing all of its string operations in memory using Fortran
intrinsic functions.

109

LogErr
See Section 39 in the Reference Manual for interfaces and
examples.

• The Log class consists of a variety of methods for writing error,
warning, and informational messages to files.

• A default Log is created at ESMF initialization. Other Logs can
be created later in the code by the user.

• A set of standard return codes and associated messages are
provided for error handling.

• LogErr will automatically put timestamps and PET numbers into
the Log.

110

LogErr Options

• Buffering allows for writing to a file immediately or storing entries in a buffer.
The buffer will either write when full, or when the user calls an
ESMF_LogFlush() method.

• The user has the capability to halt the program on an error or on a warning by
using the ESMF_LogSet() method with the halt property
◦ ESMF_LOG_HALTWARNING - the program will stop on any and all

warnings or errors
◦ ESMF_LOG_HALTERROR - the program will only halt on errors
◦ ESMF_LOG_HALTNEVER – the program will run through errors

• Single or multi file (per PET) option for writing messages

111

Virtual Machine (VM)
See Section 41 in the Reference Manual for VM interfaces
and examples.

• VM handles resource allocation
• Elements are Persistent Execution Threads or PETs
• PETs reflect the physical computer, and are one-to-one

with Posix threads or MPI processes
• Parent Components assign PETs to child Components
• The VM communications layer does simple MPI-like

communications between PETs (alternative communication
mechanisms are layered underneath)

112

DELayout
• See Section 40 in the Reference Manual for interfaces and

examples.

• Handles decomposition
• Elements are Decomposition Elements, or DEs (decomposition

that’s 2 pieces in x by 4 pieces in y is a 2 by 4 DELayout)
• DELayout maps DEs to PETs, can have more than one DE per

PET (for cache blocking, user-managed OpenMP threading)
• Simple connectivity or more complex connectivity, with weights

between DEs - users specify dimensions where greater
connection speed is needed

• Array, Field, and Bundle methods perform inter-DE
communications

113

4 CLASSES AND FUNCTIONS

• ESMF Superstructure Classes
• ESMF Infrastructure Classes: Data Structures
• ESMF Infrastructure Classes: Utilities
• Exercises

114

Exercises
1. Go to the ESMF main source repository via the website (from Development).
2. Select Browse the CVS Tree.
3. Change directory to esmf, which is the ESMF distribution.
4. Change directory to build, to view directories for supported platforms.
5. Return to the next level up by clicking on [cvs]/esmf/esmf/build.
6. Change directory to src and locate the Infrastructure and Superstructure

directories.
7. Note that code is arranged by class within these directories, and that each

class has a standard set of subdirectories (doc, examples, include, interface,
src, and tests, plus a makefile). This way of browsing the ESMF source code
shows all directories, even empty ones.

115

5 PREPARING FOR AND USING
ESMF

• Adoption Strategies
• Exercises

116

Adoption Strategies: Top Down
1. Decide how to organize the application as discrete Gridded and Coupler

Components. The developer might need to reorganize code so that individual
components are cleanly separated and their interactions consist of a minimal
number of data exchanges.

2. Divide the code for each component into initialize, run, and finalize methods.
These methods can be multi-phase, e.g., init_1, init_2.

3. Pack any data that will be transferred between components into ESMF Import
and Export State data structures.

4. The user must describe the distribution of grids over resources on a parallel
computer via the VM and DELayout.

5. Pack time information into ESMF time management data structures.
6. Using code templates provided in the ESMF distribution, create ESMF

Gridded and Coupler Components to represent each component in the user
code.

7. Write a set services routine that sets ESMF entry points for each user
component’s initialize, run, and finalize methods.

8. Run the application using an ESMF Application Driver.

117

Adoption Strategies: Bottom Up

Adoption of infrastructure utilities and data structures can follow
many different paths. The calendar management utility is a popular
place to start, since there is enough functionality in the ESMF time
manager to merit the effort required to integrate it into codes and
bundle it with an application.

118

ESMF Quickstart
Directory with the shell of an application

• 2 Gridded Components
• 1 Coupler Component
• 1 top-level Gridded Component
• 1 AppDriver main program

119

5 PREPARING FOR AND USING
ESMF

• Adoption Strategies
• Exercises

120

Exercises
Following the User’s Guide:

• Review and run Quickstart.
• Run unit tests and system tests.
• Run examples.

121

6 RESOURCES

• Documentation
• User Support
• Testing and Validation Pages
• Mailing Lists
• Users Meetings
• Exercises

122

Documentation
• Users Guide

◦ Installation, quick start and demo, architectural overview, glossary
• Reference Manual

◦ Overall framework rules and behavior
◦ Method interfaces, usage, examples, and restrictions
◦ Design and implementation notes

• Developers Guide
◦ Documentation and code conventions
◦ Definition of compliance

• Requirements Document
• Implementation Report

◦ C++/Fortran interoperation strategy
• (Draft) Project Plan

◦ Goals, organizational structure, activities

123

Documentation
• Latex and html documents are automatically generated from

code and comments in the ESMF source code using the
PROTEX tool from NASA

• The Reference Manual, Users Guide and Requirements
Document are archived with the source code in the main
ESMF CVS repository and bundled with each release

• These documents can be built by the user with the make
utility (latex, latex2html, and dvipdf are needed)

• Code examples from the documentation, quick start, and
demo are regression tested nightly and automatically
updated

124

User Support
• ALL requests go through the esmf_support@ucar.edu list so that

they can be archived and tracked
• Support policy is on the ESMF website
• Support archives and bug reports are on the ESMF website -

see http://www.esmf.ucar.edu > Development
Bug reports are under Bugs and support requests are under
Lists.

125

Testing and Validation Pages

• Accessible from the Development link on the ESMF website
• Detailed explanations of system tests
• Supported platforms and information about each
• Links to regression test archives
• Weekly regression test schedule

126

Mailing Lists To Join
• esmf_jst@ucar.edu

Joint specification team discussion
◦ Release and review notices
◦ Technical discussion
◦ Coordination and planning

• esmf_info@ucar.edu
General information
◦ Quarterly updates

• esmf_community@ucar.edu
Community announcements
◦ Annual meeting announcements

127

Mailing Lists To Write
• esmf

Project leads
◦ Non-technical questions
◦ Project information

• esmf_support
Technical questions and comments

128

Users Meetings
• Every six weeks ESMF Early Adopters meet at GFDL
• Meeting schedule is on the ESMF website

http://www.esmf.ucar.edu > Community

129

6 RESOURCES

• Documentation
• User Support
• Testing and Validation Pages
• Mailing Lists
• Users Meetings
• Exercises

130

Exercises
1. Subscribe to mailing lists.

131

7 COMPLIANCE

• Definitions
• Exercises

132

Compliance
• Compliance and adoption are used interchangeably in documents
• Definitions result from negotiation with NASA program staff and apply to the

ESMF / NASA contractual obligation
• Partial compliance and full compliance defined
• Partial compliance means use of the superstructure layer

◦ User code structured as discrete components with initialize, run, and finalize
methods

◦ Data to be transferred between components packaged as ESMF States
◦ User code wrapped as ESMF Gridded and Coupled Components
◦ Application sequenced using ESMF Application Driver

• Full compliance means partial compliance plus using three or more utilities
• Full compliance is not appropriate for all codes

133

Partial Compliance
In order to achieve partial compliance, a JMC code component must implement, or
adopt default implementations, of the complete set of standard ESMF component
interface methods including the following capabilities:

• It must be able to be instantiated in parallel configurations.
• It must provide implementations of methods for creation, deletion, configuration,

initialization, finalization, run, read and write restart, and others as necessary for
control by an ESMF application framework.

• It must provide method implementations to allow it to be queried for its distribution,
state (i.e. fields available for export, fields required for import, etc.), run status and
other pertinent information.

• Communication with other JMC code components must be mediated by an ESMF
coupler component using framework communication services, such that neither JMC
component needs to maintain information about the specific component that it is being
coupled to.

134

Partial Compliance (cont.)
• Data and information to be exchanged with other JMC code components must be

provided through ESMF constructs and utilities (i.e. ESMF state, bundles, elds, time,
grid, decomposition, etc.) These must include pertinent metadata information and
provide a standard format for exchanging information. JMC code components must
use the public interface methods provided by the ESMF utilities and constructs and not
directly manipulate their internal data.

• The JMC components must be able to accept ESMF time management information.
• Data and information to be exchanged with other JMC code components must be

provided through ESMF constructs and utilities (i.e. ESMF state, bundles, elds, grid,
etc.) These must include pertinent metadata information and provide a standard format
for exchanging information. JMC code components must use the public interface
methods provided by the ESMF utilities and not directly manipulate the internal data of
those utilities.

135

Full Compliance
A fully compliant JMC code component must satisfy all requirements described for
partial compliance. In addition, a fully compliant component must:

• Extensively use internally three or more utilities from the following set: I/O,
parameter specification, log/error, performance profiling, time management, grid
communication services.

• Adopt the standard ESMF grid communication services and constructs internally to
the extent necessary to allow interoperability with other compliant weather,
climate, and data assimilation components.

• Adopt design features that eliminate or minimize as much as possible the potential
for name space conflicts of variables, methods, etc. between components.

• Adopt design features that eliminate or minimize as much as possible the potential
for I/O conflicts between components during reads/writes of configuration, state,
errors, logs, performance analysis, etc.

136

7 COMPLIANCE

• Definitions
• Exercises

137

Exercises
1. Consider what level of compliance is appropriate for your

application.
2. Consider whether you would use a top-down or bottom-up

strategy for adoption.

138

8 CODE EXAMPLES
• Users can discuss adoption of ESMF in their applications with

ESMF staff.

